Information on Result #554509
There is no linear OOA(2235, 332, F2, 2, 105) (dual of [(332, 2), 429, 106]-NRT-code), because 1 step m-reduction would yield linear OA(2234, 332, F2, 104) (dual of [332, 98, 105]-code), but
- construction Y1 [i] would yield
- OA(2233, 296, S2, 104), but
- the linear programming bound shows that M ≥ 40 441027 764911 159411 999678 250893 328460 000589 698723 782371 054222 923004 931887 671319 124733 067264 / 2499 525994 551277 812375 > 2233 [i]
- linear OA(298, 332, F2, 36) (dual of [332, 234, 37]-code), but
- discarding factors / shortening the dual code would yield linear OA(298, 328, F2, 36) (dual of [328, 230, 37]-code), but
- the Johnson bound shows that N ≤ 1638 846907 564815 429866 669910 715625 391366 929534 207151 722672 384476 916602 < 2230 [i]
- discarding factors / shortening the dual code would yield linear OA(298, 328, F2, 36) (dual of [328, 230, 37]-code), but
- OA(2233, 296, S2, 104), but
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(2235, 332, F2, 3, 105) (dual of [(332, 3), 761, 106]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(2235, 332, F2, 4, 105) (dual of [(332, 4), 1093, 106]-NRT-code) | [i] | ||
3 | No linear OOA(2235, 332, F2, 5, 105) (dual of [(332, 5), 1425, 106]-NRT-code) | [i] | ||
4 | No linear OOA(2235, 332, F2, 6, 105) (dual of [(332, 6), 1757, 106]-NRT-code) | [i] | ||
5 | No linear OOA(2235, 332, F2, 7, 105) (dual of [(332, 7), 2089, 106]-NRT-code) | [i] | ||
6 | No linear OOA(2235, 332, F2, 8, 105) (dual of [(332, 8), 2421, 106]-NRT-code) | [i] |