Information on Result #554664

There is no linear OOA(2241, 233, F2, 2, 130) (dual of [(233, 2), 225, 131]-NRT-code), because 18 step m-reduction would yield linear OA(2223, 233, F2, 112) (dual of [233, 10, 113]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2241, 233, F2, 3, 130) (dual of [(233, 3), 458, 131]-NRT-code) [i]Depth Reduction
2No linear OOA(2241, 233, F2, 4, 130) (dual of [(233, 4), 691, 131]-NRT-code) [i]
3No linear OOA(2241, 233, F2, 5, 130) (dual of [(233, 5), 924, 131]-NRT-code) [i]
4No linear OOA(2241, 233, F2, 6, 130) (dual of [(233, 6), 1157, 131]-NRT-code) [i]
5No linear OOA(2241, 233, F2, 7, 130) (dual of [(233, 7), 1390, 131]-NRT-code) [i]
6No linear OOA(2241, 233, F2, 8, 130) (dual of [(233, 8), 1623, 131]-NRT-code) [i]