Information on Result #554683
There is no linear OOA(2242, 257, F2, 2, 121) (dual of [(257, 2), 272, 122]-NRT-code), because 1 step m-reduction would yield linear OA(2241, 257, F2, 120) (dual of [257, 16, 121]-code), but
- residual code [i] would yield OA(2121, 136, S2, 60), but
- the linear programming bound shows that M ≥ 579798 617937 414024 433657 409237 804061 294592 / 216783 > 2121 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(2242, 257, F2, 3, 121) (dual of [(257, 3), 529, 122]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(2242, 257, F2, 4, 121) (dual of [(257, 4), 786, 122]-NRT-code) | [i] | ||
3 | No linear OOA(2242, 257, F2, 5, 121) (dual of [(257, 5), 1043, 122]-NRT-code) | [i] | ||
4 | No linear OOA(2242, 257, F2, 6, 121) (dual of [(257, 6), 1300, 122]-NRT-code) | [i] | ||
5 | No linear OOA(2242, 257, F2, 7, 121) (dual of [(257, 7), 1557, 122]-NRT-code) | [i] | ||
6 | No linear OOA(2242, 257, F2, 8, 121) (dual of [(257, 8), 1814, 122]-NRT-code) | [i] |