Information on Result #554765
There is no linear OOA(2245, 259, F2, 2, 123) (dual of [(259, 2), 273, 124]-NRT-code), because 3 step m-reduction would yield linear OA(2242, 259, F2, 120) (dual of [259, 17, 121]-code), but
- residual code [i] would yield OA(2122, 138, S2, 60), but
- the linear programming bound shows that M ≥ 9 124501 527801 504428 538658 410979 148706 086912 / 1 627593 > 2122 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(2245, 259, F2, 3, 123) (dual of [(259, 3), 532, 124]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(2245, 259, F2, 4, 123) (dual of [(259, 4), 791, 124]-NRT-code) | [i] | ||
3 | No linear OOA(2245, 259, F2, 5, 123) (dual of [(259, 5), 1050, 124]-NRT-code) | [i] | ||
4 | No linear OOA(2245, 259, F2, 6, 123) (dual of [(259, 6), 1309, 124]-NRT-code) | [i] | ||
5 | No linear OOA(2245, 259, F2, 7, 123) (dual of [(259, 7), 1568, 124]-NRT-code) | [i] | ||
6 | No linear OOA(2245, 259, F2, 8, 123) (dual of [(259, 8), 1827, 124]-NRT-code) | [i] |