Information on Result #554791
There is no linear OOA(2246, 268, F2, 2, 121) (dual of [(268, 2), 290, 122]-NRT-code), because 1 step m-reduction would yield linear OA(2245, 268, F2, 120) (dual of [268, 23, 121]-code), but
- residual code [i] would yield OA(2125, 147, S2, 60), but
- the linear programming bound shows that M ≥ 4975 875550 493628 228516 818795 559541 294187 413504 / 103 046325 > 2125 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(2246, 268, F2, 3, 121) (dual of [(268, 3), 558, 122]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(2246, 268, F2, 4, 121) (dual of [(268, 4), 826, 122]-NRT-code) | [i] | ||
3 | No linear OOA(2246, 268, F2, 5, 121) (dual of [(268, 5), 1094, 122]-NRT-code) | [i] | ||
4 | No linear OOA(2246, 268, F2, 6, 121) (dual of [(268, 6), 1362, 122]-NRT-code) | [i] | ||
5 | No linear OOA(2246, 268, F2, 7, 121) (dual of [(268, 7), 1630, 122]-NRT-code) | [i] | ||
6 | No linear OOA(2246, 268, F2, 8, 121) (dual of [(268, 8), 1898, 122]-NRT-code) | [i] |