Information on Result #554792
There is no linear OOA(2246, 261, F2, 2, 123) (dual of [(261, 2), 276, 124]-NRT-code), because 3 step m-reduction would yield linear OA(2243, 261, F2, 120) (dual of [261, 18, 121]-code), but
- residual code [i] would yield OA(2123, 140, S2, 60), but
- the linear programming bound shows that M ≥ 3 888746 889172 484760 459445 013730 247120 519168 / 329189 > 2123 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(2246, 261, F2, 3, 123) (dual of [(261, 3), 537, 124]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(2246, 261, F2, 4, 123) (dual of [(261, 4), 798, 124]-NRT-code) | [i] | ||
3 | No linear OOA(2246, 261, F2, 5, 123) (dual of [(261, 5), 1059, 124]-NRT-code) | [i] | ||
4 | No linear OOA(2246, 261, F2, 6, 123) (dual of [(261, 6), 1320, 124]-NRT-code) | [i] | ||
5 | No linear OOA(2246, 261, F2, 7, 123) (dual of [(261, 7), 1581, 124]-NRT-code) | [i] | ||
6 | No linear OOA(2246, 261, F2, 8, 123) (dual of [(261, 8), 1842, 124]-NRT-code) | [i] |