Information on Result #554794
There is no linear OOA(2246, 253, F2, 2, 126) (dual of [(253, 2), 260, 127]-NRT-code), because 6 step m-reduction would yield linear OA(2240, 253, F2, 120) (dual of [253, 13, 121]-code), but
- residual code [i] would yield OA(2120, 132, S2, 60), but
- the linear programming bound shows that M ≥ 16503 694795 665515 477973 668460 440758 255616 / 10323 > 2120 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(2246, 253, F2, 3, 126) (dual of [(253, 3), 513, 127]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(2246, 253, F2, 4, 126) (dual of [(253, 4), 766, 127]-NRT-code) | [i] | ||
3 | No linear OOA(2246, 253, F2, 5, 126) (dual of [(253, 5), 1019, 127]-NRT-code) | [i] | ||
4 | No linear OOA(2246, 253, F2, 6, 126) (dual of [(253, 6), 1272, 127]-NRT-code) | [i] | ||
5 | No linear OOA(2246, 253, F2, 7, 126) (dual of [(253, 7), 1525, 127]-NRT-code) | [i] | ||
6 | No linear OOA(2246, 253, F2, 8, 126) (dual of [(253, 8), 1778, 127]-NRT-code) | [i] |