Information on Result #554849

There is no linear OOA(2248, 270, F2, 2, 122) (dual of [(270, 2), 292, 123]-NRT-code), because 2 step m-reduction would yield linear OA(2246, 270, F2, 120) (dual of [270, 24, 121]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2248, 270, F2, 3, 122) (dual of [(270, 3), 562, 123]-NRT-code) [i]Depth Reduction
2No linear OOA(2248, 270, F2, 4, 122) (dual of [(270, 4), 832, 123]-NRT-code) [i]
3No linear OOA(2248, 270, F2, 5, 122) (dual of [(270, 5), 1102, 123]-NRT-code) [i]
4No linear OOA(2248, 270, F2, 6, 122) (dual of [(270, 6), 1372, 123]-NRT-code) [i]
5No linear OOA(2248, 270, F2, 7, 122) (dual of [(270, 7), 1642, 123]-NRT-code) [i]
6No linear OOA(2248, 270, F2, 8, 122) (dual of [(270, 8), 1912, 123]-NRT-code) [i]