Information on Result #554880
There is no linear OOA(2249, 270, F2, 2, 123) (dual of [(270, 2), 291, 124]-NRT-code), because 3 step m-reduction would yield linear OA(2246, 270, F2, 120) (dual of [270, 24, 121]-code), but
- residual code [i] would yield OA(2126, 149, S2, 60), but
- the linear programming bound shows that M ≥ 40 354766 457887 934259 048521 444548 255732 989952 / 438495 > 2126 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(2249, 270, F2, 3, 123) (dual of [(270, 3), 561, 124]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(2249, 270, F2, 4, 123) (dual of [(270, 4), 831, 124]-NRT-code) | [i] | ||
3 | No linear OOA(2249, 270, F2, 5, 123) (dual of [(270, 5), 1101, 124]-NRT-code) | [i] | ||
4 | No linear OOA(2249, 270, F2, 6, 123) (dual of [(270, 6), 1371, 124]-NRT-code) | [i] | ||
5 | No linear OOA(2249, 270, F2, 7, 123) (dual of [(270, 7), 1641, 124]-NRT-code) | [i] | ||
6 | No linear OOA(2249, 270, F2, 8, 123) (dual of [(270, 8), 1911, 124]-NRT-code) | [i] |