Information on Result #554911
There is no linear OOA(2250, 265, F2, 2, 125) (dual of [(265, 2), 280, 126]-NRT-code), because 1 step m-reduction would yield linear OA(2249, 265, F2, 124) (dual of [265, 16, 125]-code), but
- residual code [i] would yield OA(2125, 140, S2, 62), but
- the linear programming bound shows that M ≥ 6 637930 666822 611724 087981 388997 431471 898624 / 155363 > 2125 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(2250, 265, F2, 3, 125) (dual of [(265, 3), 545, 126]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(2250, 265, F2, 4, 125) (dual of [(265, 4), 810, 126]-NRT-code) | [i] | ||
3 | No linear OOA(2250, 265, F2, 5, 125) (dual of [(265, 5), 1075, 126]-NRT-code) | [i] | ||
4 | No linear OOA(2250, 265, F2, 6, 125) (dual of [(265, 6), 1340, 126]-NRT-code) | [i] | ||
5 | No linear OOA(2250, 265, F2, 7, 125) (dual of [(265, 7), 1605, 126]-NRT-code) | [i] | ||
6 | No linear OOA(2250, 265, F2, 8, 125) (dual of [(265, 8), 1870, 126]-NRT-code) | [i] |