Information on Result #554912
There is no linear OOA(2250, 261, F2, 2, 126) (dual of [(261, 2), 272, 127]-NRT-code), because 2 step m-reduction would yield linear OA(2248, 261, F2, 124) (dual of [261, 13, 125]-code), but
- residual code [i] would yield OA(2124, 136, S2, 62), but
- the linear programming bound shows that M ≥ 17949 894855 079503 947693 010542 025773 154304 / 703 > 2124 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(2250, 261, F2, 3, 126) (dual of [(261, 3), 533, 127]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(2250, 261, F2, 4, 126) (dual of [(261, 4), 794, 127]-NRT-code) | [i] | ||
3 | No linear OOA(2250, 261, F2, 5, 126) (dual of [(261, 5), 1055, 127]-NRT-code) | [i] | ||
4 | No linear OOA(2250, 261, F2, 6, 126) (dual of [(261, 6), 1316, 127]-NRT-code) | [i] | ||
5 | No linear OOA(2250, 261, F2, 7, 126) (dual of [(261, 7), 1577, 127]-NRT-code) | [i] | ||
6 | No linear OOA(2250, 261, F2, 8, 126) (dual of [(261, 8), 1838, 127]-NRT-code) | [i] |