Information on Result #554917

There is no linear OOA(2250, 248, F2, 2, 132) (dual of [(248, 2), 246, 133]-NRT-code), because 12 step m-reduction would yield linear OA(2238, 248, F2, 120) (dual of [248, 10, 121]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2250, 248, F2, 3, 132) (dual of [(248, 3), 494, 133]-NRT-code) [i]Depth Reduction
2No linear OOA(2250, 248, F2, 4, 132) (dual of [(248, 4), 742, 133]-NRT-code) [i]
3No linear OOA(2250, 248, F2, 5, 132) (dual of [(248, 5), 990, 133]-NRT-code) [i]
4No linear OOA(2250, 248, F2, 6, 132) (dual of [(248, 6), 1238, 133]-NRT-code) [i]
5No linear OOA(2250, 248, F2, 7, 132) (dual of [(248, 7), 1486, 133]-NRT-code) [i]
6No linear OOA(2250, 248, F2, 8, 132) (dual of [(248, 8), 1734, 133]-NRT-code) [i]