Information on Result #555107

There is no linear OOA(2256, 288, F2, 2, 125) (dual of [(288, 2), 320, 126]-NRT-code), because 1 step m-reduction would yield linear OA(2255, 288, F2, 124) (dual of [288, 33, 125]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2256, 288, F2, 3, 125) (dual of [(288, 3), 608, 126]-NRT-code) [i]Depth Reduction
2No linear OOA(2256, 288, F2, 4, 125) (dual of [(288, 4), 896, 126]-NRT-code) [i]
3No linear OOA(2256, 288, F2, 5, 125) (dual of [(288, 5), 1184, 126]-NRT-code) [i]
4No linear OOA(2256, 288, F2, 6, 125) (dual of [(288, 6), 1472, 126]-NRT-code) [i]
5No linear OOA(2256, 288, F2, 7, 125) (dual of [(288, 7), 1760, 126]-NRT-code) [i]
6No linear OOA(2256, 288, F2, 8, 125) (dual of [(288, 8), 2048, 126]-NRT-code) [i]