Information on Result #555117

There is no linear OOA(2256, 253, F2, 2, 136) (dual of [(253, 2), 250, 137]-NRT-code), because 16 step m-reduction would yield linear OA(2240, 253, F2, 120) (dual of [253, 13, 121]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2256, 253, F2, 3, 136) (dual of [(253, 3), 503, 137]-NRT-code) [i]Depth Reduction
2No linear OOA(2256, 253, F2, 4, 136) (dual of [(253, 4), 756, 137]-NRT-code) [i]
3No linear OOA(2256, 253, F2, 5, 136) (dual of [(253, 5), 1009, 137]-NRT-code) [i]
4No linear OOA(2256, 253, F2, 6, 136) (dual of [(253, 6), 1262, 137]-NRT-code) [i]
5No linear OOA(2256, 253, F2, 7, 136) (dual of [(253, 7), 1515, 137]-NRT-code) [i]
6No linear OOA(2256, 253, F2, 8, 136) (dual of [(253, 8), 1768, 137]-NRT-code) [i]