Information on Result #555253

There is no linear OOA(2260, 269, F2, 2, 131) (dual of [(269, 2), 278, 132]-NRT-code), because 1 step m-reduction would yield linear OA(2259, 269, F2, 130) (dual of [269, 10, 131]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2260, 269, F2, 3, 131) (dual of [(269, 3), 547, 132]-NRT-code) [i]Depth Reduction
2No linear OOA(2260, 269, F2, 4, 131) (dual of [(269, 4), 816, 132]-NRT-code) [i]
3No linear OOA(2260, 269, F2, 5, 131) (dual of [(269, 5), 1085, 132]-NRT-code) [i]
4No linear OOA(2260, 269, F2, 6, 131) (dual of [(269, 6), 1354, 132]-NRT-code) [i]
5No linear OOA(2260, 269, F2, 7, 131) (dual of [(269, 7), 1623, 132]-NRT-code) [i]
6No linear OOA(2260, 269, F2, 8, 131) (dual of [(269, 8), 1892, 132]-NRT-code) [i]