Information on Result #555259
There is no linear OOA(2260, 257, F2, 2, 137) (dual of [(257, 2), 254, 138]-NRT-code), because 9 step m-reduction would yield linear OA(2251, 257, F2, 128) (dual of [257, 6, 129]-code), but
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(2260, 257, F2, 3, 137) (dual of [(257, 3), 511, 138]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(2260, 257, F2, 4, 137) (dual of [(257, 4), 768, 138]-NRT-code) | [i] | ||
3 | No linear OOA(2260, 257, F2, 5, 137) (dual of [(257, 5), 1025, 138]-NRT-code) | [i] | ||
4 | No linear OOA(2260, 257, F2, 6, 137) (dual of [(257, 6), 1282, 138]-NRT-code) | [i] | ||
5 | No linear OOA(2260, 257, F2, 7, 137) (dual of [(257, 7), 1539, 138]-NRT-code) | [i] | ||
6 | No linear OOA(2260, 257, F2, 8, 137) (dual of [(257, 8), 1796, 138]-NRT-code) | [i] |