Information on Result #555259

There is no linear OOA(2260, 257, F2, 2, 137) (dual of [(257, 2), 254, 138]-NRT-code), because 9 step m-reduction would yield linear OA(2251, 257, F2, 128) (dual of [257, 6, 129]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(2260, 257, F2, 3, 137) (dual of [(257, 3), 511, 138]-NRT-code) [i]Depth Reduction
2No linear OOA(2260, 257, F2, 4, 137) (dual of [(257, 4), 768, 138]-NRT-code) [i]
3No linear OOA(2260, 257, F2, 5, 137) (dual of [(257, 5), 1025, 138]-NRT-code) [i]
4No linear OOA(2260, 257, F2, 6, 137) (dual of [(257, 6), 1282, 138]-NRT-code) [i]
5No linear OOA(2260, 257, F2, 7, 137) (dual of [(257, 7), 1539, 138]-NRT-code) [i]
6No linear OOA(2260, 257, F2, 8, 137) (dual of [(257, 8), 1796, 138]-NRT-code) [i]