Information on Result #556476
There is no linear OOA(3144, 192, F3, 2, 94) (dual of [(192, 2), 240, 95]-NRT-code), because 1 step m-reduction would yield linear OA(3143, 192, F3, 93) (dual of [192, 49, 94]-code), but
- residual code [i] would yield OA(350, 98, S3, 31), but
- the linear programming bound shows that M ≥ 10987 648641 013342 145743 173235 372682 266899 084370 827701 912518 996312 526775 125687 859494 241272 685867 404994 948584 725486 672070 814119 485618 889026 285759 139347 500994 272409 764144 107327 485143 / 14936 850860 728382 359380 496865 658716 917486 950067 604982 230925 851448 010473 789047 996877 004044 146341 975545 413487 942444 435229 603540 358524 720271 605160 064554 378035 > 350 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(3144, 192, F3, 3, 94) (dual of [(192, 3), 432, 95]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(3144, 192, F3, 4, 94) (dual of [(192, 4), 624, 95]-NRT-code) | [i] | ||
3 | No linear OOA(3144, 192, F3, 5, 94) (dual of [(192, 5), 816, 95]-NRT-code) | [i] |