Information on Result #556519
There is no linear OOA(3147, 216, F3, 2, 95) (dual of [(216, 2), 285, 96]-NRT-code), because 2 step m-reduction would yield linear OA(3145, 216, F3, 93) (dual of [216, 71, 94]-code), but
- residual code [i] would yield OA(352, 122, S3, 31), but
- the linear programming bound shows that M ≥ 19725 986797 755777 852323 435596 460479 202036 641392 776622 387026 170595 661601 866699 763499 067224 083319 101071 843283 443846 889719 591360 / 2985 345408 219380 711117 519513 518083 267277 757151 882703 066172 010819 020295 476643 056764 180222 169772 636319 > 352 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(3147, 216, F3, 3, 95) (dual of [(216, 3), 501, 96]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(3147, 216, F3, 4, 95) (dual of [(216, 4), 717, 96]-NRT-code) | [i] | ||
3 | No linear OOA(3147, 216, F3, 5, 95) (dual of [(216, 5), 933, 96]-NRT-code) | [i] |