Information on Result #556532
There is no linear OOA(3148, 188, F3, 2, 97) (dual of [(188, 2), 228, 98]-NRT-code), because 1 step m-reduction would yield linear OA(3147, 188, F3, 96) (dual of [188, 41, 97]-code), but
- residual code [i] would yield OA(351, 91, S3, 32), but
- the linear programming bound shows that M ≥ 3 796003 121606 659684 644081 485270 254802 809922 702083 145243 272087 278428 845740 570091 586803 340207 313946 354006 591960 625547 / 1 756668 470243 430645 991636 297238 233510 101788 678484 940922 765709 380449 381903 813470 038571 507115 > 351 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(3148, 188, F3, 3, 97) (dual of [(188, 3), 416, 98]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(3148, 188, F3, 4, 97) (dual of [(188, 4), 604, 98]-NRT-code) | [i] | ||
3 | No linear OOA(3148, 188, F3, 5, 97) (dual of [(188, 5), 792, 98]-NRT-code) | [i] |