Information on Result #556574
There is no linear OOA(3151, 213, F3, 2, 98) (dual of [(213, 2), 275, 99]-NRT-code), because 2 step m-reduction would yield linear OA(3149, 213, F3, 96) (dual of [213, 64, 97]-code), but
- residual code [i] would yield OA(353, 116, S3, 32), but
- the linear programming bound shows that M ≥ 30 210723 713137 067177 793975 595437 389937 655484 598142 095463 860309 406988 954987 805424 205733 738518 195687 105322 605711 836142 015912 625489 745728 349344 380080 374822 240851 452346 970066 591441 / 1 515367 982730 495420 433932 584698 701039 350523 187407 082539 706877 207417 526512 266220 467507 257976 353777 430603 205351 330224 160963 457142 806942 300281 987731 316143 > 353 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(3151, 213, F3, 3, 98) (dual of [(213, 3), 488, 99]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(3151, 213, F3, 4, 98) (dual of [(213, 4), 701, 99]-NRT-code) | [i] | ||
3 | No linear OOA(3151, 213, F3, 5, 98) (dual of [(213, 5), 914, 99]-NRT-code) | [i] |