Information on Result #556599
There is no linear OOA(3153, 233, F3, 2, 98) (dual of [(233, 2), 313, 99]-NRT-code), because 2 step m-reduction would yield linear OA(3151, 233, F3, 96) (dual of [233, 82, 97]-code), but
- residual code [i] would yield OA(355, 136, S3, 32), but
- the linear programming bound shows that M ≥ 3692 381881 435086 561083 538512 781551 192892 214805 966690 241846 076111 760291 378162 952668 981065 231048 784442 555038 600643 905023 157760 / 19 467037 909253 478265 941280 359023 466094 270607 906474 140765 003376 713759 364882 992681 224990 199775 364421 > 355 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(3153, 233, F3, 3, 98) (dual of [(233, 3), 546, 99]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(3153, 233, F3, 4, 98) (dual of [(233, 4), 779, 99]-NRT-code) | [i] | ||
3 | No linear OOA(3153, 233, F3, 5, 98) (dual of [(233, 5), 1012, 99]-NRT-code) | [i] |