Information on Result #556600
There is no linear OOA(3153, 198, F3, 2, 100) (dual of [(198, 2), 243, 101]-NRT-code), because 1 step m-reduction would yield linear OA(3152, 198, F3, 99) (dual of [198, 46, 100]-code), but
- residual code [i] would yield OA(353, 98, S3, 33), but
- the linear programming bound shows that M ≥ 70405 986787 631825 456516 749181 938054 391496 023445 621407 247393 974860 100167 193867 925850 156399 787754 027088 012405 632448 512652 067196 819333 / 3435 057828 133240 896934 525314 441640 529877 282946 429987 863449 445479 386348 848486 854894 335014 985183 953870 063104 > 353 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(3153, 198, F3, 3, 100) (dual of [(198, 3), 441, 101]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(3153, 198, F3, 4, 100) (dual of [(198, 4), 639, 101]-NRT-code) | [i] | ||
3 | No linear OOA(3153, 198, F3, 5, 100) (dual of [(198, 5), 837, 101]-NRT-code) | [i] |