Information on Result #556642
There is no linear OOA(3156, 270, F3, 2, 98) (dual of [(270, 2), 384, 99]-NRT-code), because 2 step m-reduction would yield linear OA(3154, 270, F3, 96) (dual of [270, 116, 97]-code), but
- residual code [i] would yield OA(358, 173, S3, 32), but
- the linear programming bound shows that M ≥ 47 314229 835710 776345 670615 418214 790563 428291 670976 086718 521800 / 9965 095822 320687 546955 148607 190123 > 358 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(3156, 270, F3, 3, 98) (dual of [(270, 3), 654, 99]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(3156, 270, F3, 4, 98) (dual of [(270, 4), 924, 99]-NRT-code) | [i] | ||
3 | No linear OOA(3156, 270, F3, 5, 98) (dual of [(270, 5), 1194, 99]-NRT-code) | [i] |