Information on Result #556716
There is no linear OOA(3161, 241, F3, 2, 103) (dual of [(241, 2), 321, 104]-NRT-code), because 1 step m-reduction would yield linear OA(3160, 241, F3, 102) (dual of [241, 81, 103]-code), but
- residual code [i] would yield OA(358, 138, S3, 34), but
- the linear programming bound shows that M ≥ 127476 152647 109858 836964 999510 941941 258810 174509 185909 510810 236158 485486 586777 642310 167217 093997 490577 412163 979598 552712 810081 135105 109375 / 26 664339 762561 735625 225371 208573 781952 042183 497535 838408 714653 075655 100686 712415 616991 631039 991283 863425 318551 > 358 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(3161, 241, F3, 3, 103) (dual of [(241, 3), 562, 104]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(3161, 241, F3, 4, 103) (dual of [(241, 4), 803, 104]-NRT-code) | [i] | ||
3 | No linear OOA(3161, 241, F3, 5, 103) (dual of [(241, 5), 1044, 104]-NRT-code) | [i] |