Information on Result #556717
There is no linear OOA(3161, 232, F3, 2, 104) (dual of [(232, 2), 303, 105]-NRT-code), because 2 step m-reduction would yield linear OA(3159, 232, F3, 102) (dual of [232, 73, 103]-code), but
- residual code [i] would yield OA(357, 129, S3, 34), but
- the linear programming bound shows that M ≥ 809354 275724 755763 388392 345759 739922 797610 964396 279375 665149 044386 576230 563429 788711 154133 451299 709022 738390 856898 439717 989850 127611 596351 869114 451031 438259 777221 098329 631772 962500 / 496 565899 544592 863342 975273 469710 153169 995856 683171 150954 405859 112820 872932 367752 443426 608748 461587 519331 493689 756263 492748 867872 843898 726516 425058 229629 > 357 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(3161, 232, F3, 3, 104) (dual of [(232, 3), 535, 105]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(3161, 232, F3, 4, 104) (dual of [(232, 4), 767, 105]-NRT-code) | [i] | ||
3 | No linear OOA(3161, 232, F3, 5, 104) (dual of [(232, 5), 999, 105]-NRT-code) | [i] |