Information on Result #556746
There is no linear OOA(3163, 252, F3, 2, 104) (dual of [(252, 2), 341, 105]-NRT-code), because 2 step m-reduction would yield linear OA(3161, 252, F3, 102) (dual of [252, 91, 103]-code), but
- residual code [i] would yield OA(359, 149, S3, 34), but
- the linear programming bound shows that M ≥ 161072 631961 680185 280440 930117 244701 258542 024979 482340 755321 093357 664942 075114 897456 280621 705350 294957 376375 / 10 335291 754987 667559 057108 370888 319896 679664 836625 228437 457068 286900 284102 491501 > 359 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(3163, 252, F3, 3, 104) (dual of [(252, 3), 593, 105]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(3163, 252, F3, 4, 104) (dual of [(252, 4), 845, 105]-NRT-code) | [i] | ||
3 | No linear OOA(3163, 252, F3, 5, 104) (dual of [(252, 5), 1097, 105]-NRT-code) | [i] |