Information on Result #556748
There is no linear OOA(3163, 204, F3, 2, 107) (dual of [(204, 2), 245, 108]-NRT-code), because 2 step m-reduction would yield linear OA(3161, 204, F3, 105) (dual of [204, 43, 106]-code), but
- residual code [i] would yield OA(356, 98, S3, 35), but
- the linear programming bound shows that M ≥ 17594 267310 234640 548980 678885 211362 293573 050792 059460 366181 760458 388479 597863 317354 958813 552441 815811 709869 / 31 435807 153094 400646 640285 665269 261214 518362 272160 890223 276799 339913 769425 758125 > 356 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(3163, 204, F3, 3, 107) (dual of [(204, 3), 449, 108]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(3163, 204, F3, 4, 107) (dual of [(204, 4), 653, 108]-NRT-code) | [i] | ||
3 | No linear OOA(3163, 204, F3, 5, 107) (dual of [(204, 5), 857, 108]-NRT-code) | [i] |