Information on Result #556792
There is no linear OOA(3166, 254, F3, 2, 106) (dual of [(254, 2), 342, 107]-NRT-code), because 1 step m-reduction would yield linear OA(3165, 254, F3, 105) (dual of [254, 89, 106]-code), but
- residual code [i] would yield OA(360, 148, S3, 35), but
- the linear programming bound shows that M ≥ 32736 674181 247111 523198 040277 032547 478736 312432 761773 182980 156745 054076 913794 735387 713391 860471 994046 617776 080101 939907 837612 473720 955089 815789 352300 892160 / 691974 074846 423845 929231 601971 384016 174717 370524 100041 408052 710499 582060 732735 640083 715550 709077 494269 293566 444659 318525 072647 > 360 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(3166, 254, F3, 3, 106) (dual of [(254, 3), 596, 107]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(3166, 254, F3, 4, 106) (dual of [(254, 4), 850, 107]-NRT-code) | [i] | ||
3 | No linear OOA(3166, 254, F3, 5, 106) (dual of [(254, 5), 1104, 107]-NRT-code) | [i] |