Information on Result #556807
There is no linear OOA(3167, 266, F3, 2, 106) (dual of [(266, 2), 365, 107]-NRT-code), because 1 step m-reduction would yield linear OA(3166, 266, F3, 105) (dual of [266, 100, 106]-code), but
- residual code [i] would yield OA(361, 160, S3, 35), but
- the linear programming bound shows that M ≥ 1093 910277 777742 998768 653454 514500 328731 948244 229348 565648 421721 114272 536195 / 8588 577766 921583 861591 295968 393699 452287 752003 > 361 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(3167, 266, F3, 3, 106) (dual of [(266, 3), 631, 107]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(3167, 266, F3, 4, 106) (dual of [(266, 4), 897, 107]-NRT-code) | [i] | ||
3 | No linear OOA(3167, 266, F3, 5, 106) (dual of [(266, 5), 1163, 107]-NRT-code) | [i] |