Information on Result #556809
There is no linear OOA(3167, 212, F3, 2, 109) (dual of [(212, 2), 257, 110]-NRT-code), because 1 step m-reduction would yield linear OA(3166, 212, F3, 108) (dual of [212, 46, 109]-code), but
- residual code [i] would yield OA(358, 103, S3, 36), but
- the linear programming bound shows that M ≥ 10156 978991 001331 162956 096121 250957 052835 549981 966253 500685 908151 917037 752938 447734 452120 610565 247729 783614 274683 456708 473505 647028 881750 777661 / 2 150100 658067 421186 781820 643305 293437 760326 405421 945649 628834 598190 514781 560026 381075 663150 228993 281922 344503 352960 > 358 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(3167, 212, F3, 3, 109) (dual of [(212, 3), 469, 110]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(3167, 212, F3, 4, 109) (dual of [(212, 4), 681, 110]-NRT-code) | [i] | ||
3 | No linear OOA(3167, 212, F3, 5, 109) (dual of [(212, 5), 893, 110]-NRT-code) | [i] |