Information on Result #556823
There is no linear OOA(3168, 282, F3, 2, 106) (dual of [(282, 2), 396, 107]-NRT-code), because 1 step m-reduction would yield linear OA(3167, 282, F3, 105) (dual of [282, 115, 106]-code), but
- residual code [i] would yield OA(362, 176, S3, 35), but
- the linear programming bound shows that M ≥ 8 776263 770751 612540 193525 834020 135240 880280 270100 948539 296875 / 21 936508 659210 038625 164225 310787 > 362 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(3168, 282, F3, 3, 106) (dual of [(282, 3), 678, 107]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(3168, 282, F3, 4, 106) (dual of [(282, 4), 960, 107]-NRT-code) | [i] | ||
3 | No linear OOA(3168, 282, F3, 5, 106) (dual of [(282, 5), 1242, 107]-NRT-code) | [i] |