Information on Result #556872
There is no linear OOA(3171, 260, F3, 2, 109) (dual of [(260, 2), 349, 110]-NRT-code), because 1 step m-reduction would yield linear OA(3170, 260, F3, 108) (dual of [260, 90, 109]-code), but
- residual code [i] would yield OA(362, 151, S3, 36), but
- the linear programming bound shows that M ≥ 315 982382 936192 071390 140679 488499 072998 791757 288635 952439 440300 300796 107515 352026 429217 565172 043806 037893 027375 543805 938233 482903 869423 244973 363200 / 785 326280 415847 869963 489755 597656 207457 889325 536642 055726 952039 256677 666095 401973 721090 055553 083299 838666 281323 935199 > 362 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(3171, 260, F3, 3, 109) (dual of [(260, 3), 609, 110]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(3171, 260, F3, 4, 109) (dual of [(260, 4), 869, 110]-NRT-code) | [i] | ||
3 | No linear OOA(3171, 260, F3, 5, 109) (dual of [(260, 5), 1129, 110]-NRT-code) | [i] |