Information on Result #556961
There is no linear OOA(3176, 219, F3, 2, 115) (dual of [(219, 2), 262, 116]-NRT-code), because 1 step m-reduction would yield linear OA(3175, 219, F3, 114) (dual of [219, 44, 115]-code), but
- residual code [i] would yield OA(361, 104, S3, 38), but
- the linear programming bound shows that M ≥ 215738 553867 294765 547315 427144 658478 953384 447876 816406 609237 390217 341335 785320 530901 097095 689610 364315 585436 148743 / 1 653900 488288 762417 441699 879030 043019 631369 903205 462657 103479 100855 831115 771782 746875 > 361 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(3176, 219, F3, 3, 115) (dual of [(219, 3), 481, 116]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(3176, 219, F3, 4, 115) (dual of [(219, 4), 700, 116]-NRT-code) | [i] | ||
3 | No linear OOA(3176, 219, F3, 5, 115) (dual of [(219, 5), 919, 116]-NRT-code) | [i] |