Information on Result #557124
There is no linear OOA(3185, 225, F3, 2, 121) (dual of [(225, 2), 265, 122]-NRT-code), because 1 step m-reduction would yield linear OA(3184, 225, F3, 120) (dual of [225, 41, 121]-code), but
- residual code [i] would yield OA(364, 104, S3, 40), but
- the linear programming bound shows that M ≥ 2 962004 263094 532507 337869 081743 858222 059094 257308 728871 435455 157099 / 842061 707484 948215 471641 634707 432925 > 364 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(3185, 225, F3, 3, 121) (dual of [(225, 3), 490, 122]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(3185, 225, F3, 4, 121) (dual of [(225, 4), 715, 122]-NRT-code) | [i] | ||
3 | No linear OOA(3185, 225, F3, 5, 121) (dual of [(225, 5), 940, 122]-NRT-code) | [i] |