Information on Result #557180
There is no linear OOA(3188, 249, F3, 2, 122) (dual of [(249, 2), 310, 123]-NRT-code), because 2 step m-reduction would yield linear OA(3186, 249, F3, 120) (dual of [249, 63, 121]-code), but
- residual code [i] would yield OA(366, 128, S3, 40), but
- the linear programming bound shows that M ≥ 1 611238 946031 791724 264759 395088 592285 928104 092842 494630 503305 571976 656701 593621 859307 702786 294582 883084 776683 289434 373704 105944 992140 198769 627517 455165 575300 524097 890798 802806 487547 361269 125679 854146 910198 196389 586965 840237 090647 747006 364719 806300 187540 016277 435514 067436 922172 504295 / 51293 380536 656250 007170 433922 291185 671132 071753 215231 290065 315554 014551 516315 231224 173693 592682 977163 227707 245881 226433 262427 420593 916503 524439 740836 602894 330584 784307 101346 736157 442225 712691 935994 375094 931626 844171 580816 568822 030521 808140 786554 738304 > 366 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(3188, 249, F3, 3, 122) (dual of [(249, 3), 559, 123]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(3188, 249, F3, 4, 122) (dual of [(249, 4), 808, 123]-NRT-code) | [i] | ||
3 | No linear OOA(3188, 249, F3, 5, 122) (dual of [(249, 5), 1057, 123]-NRT-code) | [i] |