Information on Result #557221
There is no linear OOA(3190, 223, F3, 2, 125) (dual of [(223, 2), 256, 126]-NRT-code), because 2 step m-reduction would yield linear OA(3188, 223, F3, 123) (dual of [223, 35, 124]-code), but
- residual code [i] would yield OA(365, 99, S3, 41), but
- the linear programming bound shows that M ≥ 1 398289 528640 015865 013744 903134 488973 245855 682309 745191 / 125126 745302 260144 143218 > 365 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(3190, 223, F3, 3, 125) (dual of [(223, 3), 479, 126]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(3190, 223, F3, 4, 125) (dual of [(223, 4), 702, 126]-NRT-code) | [i] | ||
3 | No linear OOA(3190, 223, F3, 5, 125) (dual of [(223, 5), 925, 126]-NRT-code) | [i] |