Information on Result #557342
There is no linear OOA(3196, 244, F3, 2, 128) (dual of [(244, 2), 292, 129]-NRT-code), because 2 step m-reduction would yield linear OA(3194, 244, F3, 126) (dual of [244, 50, 127]-code), but
- residual code [i] would yield OA(368, 117, S3, 42), but
- the linear programming bound shows that M ≥ 117688 677034 371150 621267 441012 191945 699509 786586 414202 785608 822882 266942 917131 914689 407902 641112 044580 185151 160708 720843 820397 646660 433506 256247 / 388 484897 528912 368351 403561 573056 452570 889875 851861 940521 311969 565349 433313 959589 947946 383067 599375 798269 567950 > 368 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(3196, 244, F3, 3, 128) (dual of [(244, 3), 536, 129]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(3196, 244, F3, 4, 128) (dual of [(244, 4), 780, 129]-NRT-code) | [i] | ||
3 | No linear OOA(3196, 244, F3, 5, 128) (dual of [(244, 5), 1024, 129]-NRT-code) | [i] |