Information on Result #557406
There is no linear OOA(3199, 240, F3, 2, 130) (dual of [(240, 2), 281, 131]-NRT-code), because 1 step m-reduction would yield linear OA(3198, 240, F3, 129) (dual of [240, 42, 130]-code), but
- residual code [i] would yield OA(369, 110, S3, 43), but
- the linear programming bound shows that M ≥ 50 201668 479718 874895 499466 390708 573652 199787 057298 328076 392048 487469 / 56580 236789 640752 964425 611289 453125 > 369 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(3199, 240, F3, 3, 130) (dual of [(240, 3), 521, 131]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(3199, 240, F3, 4, 130) (dual of [(240, 4), 761, 131]-NRT-code) | [i] | ||
3 | No linear OOA(3199, 240, F3, 5, 130) (dual of [(240, 5), 1001, 131]-NRT-code) | [i] |