Information on Result #557616
There is no linear OOA(3208, 237, F3, 2, 137) (dual of [(237, 2), 266, 138]-NRT-code), because 2 step m-reduction would yield linear OA(3206, 237, F3, 135) (dual of [237, 31, 136]-code), but
- residual code [i] would yield OA(371, 101, S3, 45), but
- the linear programming bound shows that M ≥ 216 926424 924730 553674 571114 916369 905530 828790 001490 300107 / 28450 931091 725033 434712 > 371 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(3208, 237, F3, 3, 137) (dual of [(237, 3), 503, 138]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(3208, 237, F3, 4, 137) (dual of [(237, 4), 740, 138]-NRT-code) | [i] | ||
3 | No linear OOA(3208, 237, F3, 5, 137) (dual of [(237, 5), 977, 138]-NRT-code) | [i] |