Information on Result #558084
There is no linear OOA(3224, 360, F3, 2, 143) (dual of [(360, 2), 496, 144]-NRT-code), because 2 step m-reduction would yield linear OA(3222, 360, F3, 141) (dual of [360, 138, 142]-code), but
- residual code [i] would yield OA(381, 218, S3, 47), but
- 5 times truncation [i] would yield OA(376, 213, S3, 42), but
- the linear programming bound shows that M ≥ 24139 354386 854363 147378 476124 618112 504428 827791 667688 382538 767752 602863 057296 834401 801307 804700 / 12846 980782 406505 841743 696059 469546 157683 736221 588601 551817 > 376 [i]
- 5 times truncation [i] would yield OA(376, 213, S3, 42), but
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(3224, 360, F3, 3, 143) (dual of [(360, 3), 856, 144]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(3224, 360, F3, 4, 143) (dual of [(360, 4), 1216, 144]-NRT-code) | [i] | ||
3 | No linear OOA(3224, 360, F3, 5, 143) (dual of [(360, 5), 1576, 144]-NRT-code) | [i] |