Information on Result #558086
There is no linear OOA(3224, 273, F3, 2, 146) (dual of [(273, 2), 322, 147]-NRT-code), because 2 step m-reduction would yield linear OA(3222, 273, F3, 144) (dual of [273, 51, 145]-code), but
- residual code [i] would yield OA(378, 128, S3, 48), but
- the linear programming bound shows that M ≥ 6 575490 843517 549614 037804 755790 886921 388297 503372 467014 072409 123799 884455 544386 348644 065807 588730 807152 499714 277823 942029 / 372064 864657 803488 591486 645857 495615 261692 996975 549874 881531 815830 072025 751212 712500 > 378 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(3224, 273, F3, 3, 146) (dual of [(273, 3), 595, 147]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(3224, 273, F3, 4, 146) (dual of [(273, 4), 868, 147]-NRT-code) | [i] | ||
3 | No linear OOA(3224, 273, F3, 5, 146) (dual of [(273, 5), 1141, 147]-NRT-code) | [i] |