Information on Result #558251
There is no linear OOA(3229, 281, F3, 2, 149) (dual of [(281, 2), 333, 150]-NRT-code), because 2 step m-reduction would yield linear OA(3227, 281, F3, 147) (dual of [281, 54, 148]-code), but
- residual code [i] would yield OA(380, 133, S3, 49), but
- the linear programming bound shows that M ≥ 21223 654940 747716 870153 549604 409912 091138 635334 644884 306688 767122 427377 344322 374868 328420 535820 061178 192292 178417 467677 / 142 600278 894934 337416 159250 039930 631375 413133 442674 819708 793351 208507 551154 176000 > 380 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(3229, 281, F3, 3, 149) (dual of [(281, 3), 614, 150]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(3229, 281, F3, 4, 149) (dual of [(281, 4), 895, 150]-NRT-code) | [i] | ||
3 | No linear OOA(3229, 281, F3, 5, 149) (dual of [(281, 5), 1176, 150]-NRT-code) | [i] |