Information on Result #558500
There is no linear OOA(3236, 276, F3, 2, 154) (dual of [(276, 2), 316, 155]-NRT-code), because 1 step m-reduction would yield linear OA(3235, 276, F3, 153) (dual of [276, 41, 154]-code), but
- residual code [i] would yield OA(382, 122, S3, 51), but
- the linear programming bound shows that M ≥ 2 857259 335023 875460 783166 319642 601001 954259 886029 570784 083010 116237 359893 / 2097 368232 043591 449722 787486 700000 > 382 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(3236, 276, F3, 3, 154) (dual of [(276, 3), 592, 155]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(3236, 276, F3, 4, 154) (dual of [(276, 4), 868, 155]-NRT-code) | [i] | ||
3 | No linear OOA(3236, 276, F3, 5, 154) (dual of [(276, 5), 1144, 155]-NRT-code) | [i] |