Information on Result #558831
There is no linear OOA(3245, 381, F3, 2, 157) (dual of [(381, 2), 517, 158]-NRT-code), because 1 step m-reduction would yield linear OA(3244, 381, F3, 156) (dual of [381, 137, 157]-code), but
- residual code [i] would yield linear OA(388, 224, F3, 52) (dual of [224, 136, 53]-code), but
- the Johnson bound shows that N ≤ 73138 750163 909178 998184 764057 381403 209399 446777 305834 354572 535302 < 3136 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(3245, 381, F3, 3, 157) (dual of [(381, 3), 898, 158]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(3245, 381, F3, 4, 157) (dual of [(381, 4), 1279, 158]-NRT-code) | [i] | ||
3 | No linear OOA(3245, 381, F3, 5, 157) (dual of [(381, 5), 1660, 158]-NRT-code) | [i] |