Information on Result #558910
There is no linear OOA(3247, 304, F3, 2, 160) (dual of [(304, 2), 361, 161]-NRT-code), because 1 step m-reduction would yield linear OA(3246, 304, F3, 159) (dual of [304, 58, 160]-code), but
- residual code [i] would yield OA(387, 144, S3, 53), but
- the linear programming bound shows that M ≥ 17223 084020 715556 855848 832250 872039 681441 493489 720994 373819 071391 134556 757302 805695 961783 787857 312694 961703 747535 992711 367021 / 52541 482507 385915 572483 476316 381490 546694 054744 799929 170031 348199 163698 205504 000000 > 387 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(3247, 304, F3, 3, 160) (dual of [(304, 3), 665, 161]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(3247, 304, F3, 4, 160) (dual of [(304, 4), 969, 161]-NRT-code) | [i] | ||
3 | No linear OOA(3247, 304, F3, 5, 160) (dual of [(304, 5), 1273, 161]-NRT-code) | [i] |