Information on Result #558945
There is no linear OOA(3248, 410, F3, 2, 157) (dual of [(410, 2), 572, 158]-NRT-code), because 1 step m-reduction would yield linear OA(3247, 410, F3, 156) (dual of [410, 163, 157]-code), but
- residual code [i] would yield linear OA(391, 253, F3, 52) (dual of [253, 162, 53]-code), but
- the Johnson bound shows that N ≤ 179351 448037 571926 665032 504132 411079 734421 634873 676547 341483 836618 815717 643951 < 3162 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(3248, 410, F3, 3, 157) (dual of [(410, 3), 982, 158]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(3248, 410, F3, 4, 157) (dual of [(410, 4), 1392, 158]-NRT-code) | [i] | ||
3 | No linear OOA(3248, 410, F3, 5, 157) (dual of [(410, 5), 1802, 158]-NRT-code) | [i] |