Information on Result #558949
There is no linear OOA(3248, 274, F3, 2, 163) (dual of [(274, 2), 300, 164]-NRT-code), because 1 step m-reduction would yield linear OA(3247, 274, F3, 162) (dual of [274, 27, 163]-code), but
- residual code [i] would yield OA(385, 111, S3, 54), but
- the linear programming bound shows that M ≥ 171 512814 450641 798610 864431 673363 023574 527618 893419 348639 / 4028 884726 616750 > 385 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(3248, 274, F3, 3, 163) (dual of [(274, 3), 574, 164]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(3248, 274, F3, 4, 163) (dual of [(274, 4), 848, 164]-NRT-code) | [i] | ||
3 | No linear OOA(3248, 274, F3, 5, 163) (dual of [(274, 5), 1122, 164]-NRT-code) | [i] |