Information on Result #562046
There is no linear OOA(4257, 312, F4, 2, 190) (dual of [(312, 2), 367, 191]-NRT-code), because 2 step m-reduction would yield linear OA(4255, 312, F4, 188) (dual of [312, 57, 189]-code), but
- residual code [i] would yield OA(467, 123, S4, 47), but
- the linear programming bound shows that M ≥ 43402 647924 975488 920450 003944 566378 964570 407885 930315 158568 274900 052775 055729 425702 074252 778284 519466 230412 079171 949623 812197 935803 959581 270319 073009 003679 424611 406027 085968 310272 / 1 972722 979992 492582 380725 903751 953752 652629 461130 906381 054114 627794 331612 476321 726116 126868 678992 555081 191829 266311 527075 509736 859232 980625 > 467 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(4257, 312, F4, 3, 190) (dual of [(312, 3), 679, 191]-NRT-code) | [i] | Depth Reduction |