Information on Result #570566
There is no linear OOA(3191, 247, F3, 3, 124) (dual of [(247, 3), 550, 125]-NRT-code), because 1 times depth reduction would yield linear OOA(3191, 247, F3, 2, 124) (dual of [(247, 2), 303, 125]-NRT-code), but
- 1 step m-reduction [i] would yield linear OA(3190, 247, F3, 123) (dual of [247, 57, 124]-code), but
- residual code [i] would yield OA(367, 123, S3, 41), but
- the linear programming bound shows that M ≥ 95701 386129 167166 923308 851077 729205 755247 753256 994296 019812 866271 686259 905678 086747 373964 096192 633285 618288 594470 403818 339365 270251 414448 366241 045444 832354 852952 005712 116408 640186 608601 069925 134925 254443 011444 426759 / 952 500022 925140 246902 196538 812302 729173 238207 945067 906882 779057 896453 751466 708206 167368 761900 485092 912190 846196 557708 634886 092699 723386 777232 538945 438378 302685 186019 204098 620520 999835 > 367 [i]
- residual code [i] would yield OA(367, 123, S3, 41), but
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.