Information on Result #570926
There is no linear OOA(3206, 273, F3, 3, 133) (dual of [(273, 3), 613, 134]-NRT-code), because 1 times depth reduction would yield linear OOA(3206, 273, F3, 2, 133) (dual of [(273, 2), 340, 134]-NRT-code), but
- 1 step m-reduction [i] would yield linear OA(3205, 273, F3, 132) (dual of [273, 68, 133]-code), but
- residual code [i] would yield OA(373, 140, S3, 44), but
- the linear programming bound shows that M ≥ 426 651196 533945 277794 177817 066459 131374 008202 085888 802659 036696 527669 202693 815983 584391 137459 056798 457669 192159 045403 286391 965778 304034 355162 563286 331591 445466 916914 887710 817006 739356 421510 777732 997222 018381 182300 894737 528738 685605 711329 173568 638990 281133 910218 248264 468221 824782 678390 971932 471290 987610 894145 690857 / 6226 806701 925935 069333 939189 184464 218829 831331 158728 544801 206473 585590 314042 486809 462072 681270 025131 928836 141769 329550 849992 179178 569640 566238 985428 411754 333557 519470 160622 103652 366214 816813 466703 978253 198332 731724 093345 562626 197678 209286 936852 140296 505811 857960 325584 621714 635265 > 373 [i]
- residual code [i] would yield OA(373, 140, S3, 44), but
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.